Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Forecasting Auroral Substorms from Observed Data with a Supervised Learning Algorithm
Show others and affiliations
Responsible organisation
2015 (English)In: 2015 IEEE 11th International Conference on e-Science, 2015, p. 284-287Conference paper (Refereed)
Place, publisher, year, edition, pages
2015. p. 284-287
Keywords [en]
aurora, learning (artificial intelligence), solar wind, support vector machines, Norway, Tromso, all-sky images, aurora brightening, auroral substorm forecasting, geomagnetic field data, ionosphere, magnetosphere, supervised learning algorithm, support vector machine classifier, Accuracy, Forecasting, Kernel, Supervised learning, Training data, Wind forecasting, time series data
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-4037DOI: 10.1109/eScience.2015.48OAI: oai:DiVA.org:polar-4037DiVA, id: diva2:1169833
Conference
2015 IEEE 11th International Conference on e-Science
Available from: 2017-12-29 Created: 2017-12-29 Last updated: 2017-12-29

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf