Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Geomagnetic and ionospheric response to the interplanetary shock on January 24, 2012
Show others and affiliations
Responsible organisation
2017 (English)In: Earth Planets and Space, ISSN 1343-8832, E-ISSN 1880-5981, Vol. 69, no 1Article in journal (Refereed) Published
Abstract [en]

We have examined multi-instrument observations of the magnetospheric and ionospheric response to the interplanetary shock on January 24, 2012. Apart from various instruments, such as ground and space magnetometers, photometers, and riometers used earlier for a study of possible response to a shock, we have additionally examined variations of the ionospheric total electron content as determined from the global navigation satellite system receivers. Worldwide ground magnetometer arrays detected shock-induced sudden commencement (SC) with preliminary and main impulses throughout the dayside sector. A magnetic field compression was found to propagate through the magnetosphere with velocity less than the local Alfven velocity. Though the preliminary pulse was evident on the ground, its signature was not observed by the THEMIS and GOES satellites in the magnetosphere. The SC was accompanied by a burst of cosmic noise absorption recorded along a latitudinal network of riometers in the morning and evening sectors. The SC also caused an impulsive enhancement of dayside auroral emissions (shock aurora) as observed by the hyperspectral all-sky imager NORUSCA II at Barentsburg and the meridian scanning photometer at Longyearbyen (both at Svalbard). The VHF EISCAT radar (Tromsø, Norway) observed a SC-associated increase in electron density in the lower ionosphere (100–180 km). The system for monitoring geomagnetically induced currents (GICs) in power lines at the Kola Peninsula recorded a burst of GIC during the SC. A ≤10% positive pulse of the ionospheric total electron content caused by the SC in the dusk sector was found. On the basis of the multi-instrument information, a validated theory of the magnetosphere–ionosphere response to IP shock may be constructed. Graphical Abstract .

Place, publisher, year, edition, pages
2017. Vol. 69, no 1
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-3918DOI: 10.1186/s40623-017-0696-1OAI: oai:DiVA.org:polar-3918DiVA, id: diva2:1165717
Available from: 2017-12-13 Created: 2017-12-13 Last updated: 2017-12-13

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1186/s40623-017-0696-1
In the same journal
Earth Planets and Space
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf