Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adding stable carbon isotopes improves model representation of the role of microbial communities in peatland methane cycling
Show others and affiliations
Responsible organisation
2017 (English)In: Journal of Advances in Modeling Earth Systems, ISSN 1942-2466, Vol. 9, no 2, p. 1412-1430Article in journal (Refereed) Published
Abstract [en]

Climate change is expected to have significant and uncertain impacts on methane (CH4) emissions from northern peatlands. Biogeochemical models can extrapolate site-specificCH4 measurements to larger scales and predict responses of CH4 emissions to environmental changes. However, these models include considerable uncertainties and limitations in representing CH4 production, consumption, and transport processes. To improve predictions of CH4 transformations, we incorporated acetate and stable carbon (C) isotopic dynamics associated with CH4 cycling into a biogeochemistry model, DNDC. By including these new features, DNDC explicitly simulates acetate dynamics and the relative contribution of acetotrophic and hydrogenotrophic methanogenesis (AM and HM) to CH4 production, and predicts the C isotopic signature (δ13C) in soil C pools and emitted gases. When tested against biogeochemical and microbial community observations at two sites in a zone of thawing permafrost in a subarctic peatland in Sweden, the new formulation substantially improved agreement with CH4 production pathways and δ13C in emitted CH4 (δ13C-CH4), a measure of the integrated effects of microbial production and consumption, and of physical transport. We also investigated the sensitivity of simulated δ13C-CH4 to C isotopic composition of substrates and, to fractionation factors for CH4 production (αAM and αHM), CH4 oxidation (αMO), and plant-mediated CH4 transport (αTP). The sensitivity analysis indicated that the δ13C-CH4 is highly sensitive to the factors associated with microbial metabolism (αAM, αHM, and αMO). The model framework simulating stable C isotopic dynamics provides a robust basis for better constraining and testing microbial mechanisms in predicting CH4 cycling in peatlands.

Place, publisher, year, edition, pages
2017. Vol. 9, no 2, p. 1412-1430
Keyword [en]
Biogeochemical cycles, processes, and modeling, Carbon cycling, Biosphere/atmosphere interactions, Permafrost, cryosphere, and high-latitude processes, Wetlands, methane, stable carbon isotope, biogeochemistry, peatlands, DNDC
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-3906DOI: 10.1002/2016MS000817OAI: oai:DiVA.org:polar-3906DiVA: diva2:1165181
Available from: 2017-12-12 Created: 2017-12-12 Last updated: 2017-12-12

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://dx.doi.org/10.1002/2016MS000817
In the same journal
Journal of Advances in Modeling Earth Systems
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf