Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model
Responsible organisation
2017 (English)In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 14, no 10, p. 2571-2596Article in journal (Refereed) Published
Abstract [en]

Dynamic global vegetation models (DGVMs) are designed for the study of past, present and future vegetation patterns together with associated biogeochemical cycles and climate feedbacks. However, most DGVMs do not yet have detailed representations of permafrost and non-permafrost peatlands, which are an important store of carbon, particularly at high latitudes. We demonstrate a new implementation of peatland dynamics in a customized “Arctic” version of the LPJ-GUESS DGVM, simulating the long-term evolution of selected northern peatland ecosystems and assessing the effect of changing climate on peatland carbon balance. Our approach employs a dynamic multi-layer soil with representation of freeze-thaw processes and litter inputs from a dynamically varying mixture of the main peatland plant functional types: mosses, shrubs and graminoids. The model was calibrated and tested for a sub-Arctic mire in Stordalen, Sweden, and validated at a temperate bog site in Mer Bleue, Canada. A regional evaluation of simulated carbon fluxes, hydrology and vegetation dynamics encompassed additional locations spread across Scandinavia. Simulated peat accumulation was found to be generally consistent with published data and the model was able to capture reported long-term vegetation dynamics, water table position and carbon fluxes. A series of sensitivity experiments were carried out to investigate the vulnerability of high-latitude peatlands to climate change. We found that the Stordalen mire may be expected to sequester more carbon in the first half of the 21st century due to milder and wetter climate conditions, a longer growing season, and the CO2 fertilization effect, turning into a carbon source after mid-century because of higher decomposition rates in response to warming soils.

Place, publisher, year, edition, pages
COPERNICUS GESELLSCHAFT MBH , 2017. Vol. 14, no 10, p. 2571-2596
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-3888DOI: 10.5194/bg-14-2571-2017OAI: oai:DiVA.org:polar-3888DiVA, id: diva2:1164869
Available from: 2017-12-12 Created: 2017-12-12 Last updated: 2017-12-12

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
In the same journal
Biogeosciences
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf