Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Carbon cycling in subarctic tundra; seasonal variation in ecosystem partitioning based on in situ 14C pulse-labelling
Responsible organisation
2004 (English)In: Soil Biology and Biochemistry, ISSN 0038-0717, E-ISSN 1879-3428, Vol. 36, no 2, 245-253 p.Article in journal (Refereed) Published
Abstract [en]

Carbon assimilation and allocation were studied in a tundra ecosystem in northern Scandinavia. Seasonal variation in the below-ground carbon allocation to dissolved organic carbon (DOC), coarse-, fine-, and hair roots was investigated using in situ C-14 pulse-labelling, adding 2-3 MBq (CO2)-C-14, dm(-2) to the above-ground vegetation. Combining the allocation data with regression models of the seasonal carbon flux made it possible to estimate a temporally explicit ecosystem carbon allocation budget. The ecosystem was a net source of CO2, losing on average 0.97 gC m(-2) d(-1) to the atmosphere, with little variation through the season. There was, however, significant temporal variation in partitioning of recently assimilated carbon. Allocation to below-ground compartments over 32 days following labelling increased from 18% in June to 55% in September. Above-ground allocation showed the opposite trend. Hair roots and DOC were strong sinks in the autumn. Transport of newly assimilated carbon occurred rapidly throughout the season, C-14 appearing in all sampled pools within 4 h of labelling. The seasonal variation in carbon partitioning observed in this study has implications for the residence time of assimilated carbon in the ecosystem. A relatively greater allocation to rapidly decomposing pools, such as hair roots and DOC, would tend to reduce incorporation into woody tissue, increasing the overall rate of carbon cycling and decreasing ecosystem storage. The results of this study will be of value for building and validating mechanistic models of ecosystem carbon flow in tundra and subarctic ecosystems. (C) 2003 Elsevier Ltd. All fights reserved.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD , 2004. Vol. 36, no 2, 245-253 p.
Keyword [en]
C-14 pulse-labelling; below-ground allocation; hair root; carbon fluxes; seasonal budget; environmental control; tundra
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-3637DOI: 10.1016/j.soilbio.2003.08.026OAI: oai:DiVA.org:polar-3637DiVA: diva2:1103319
Available from: 2017-05-30 Created: 2017-05-30 Last updated: 2017-05-30

Open Access in DiVA

No full text

Other links

Publisher's full text
In the same journal
Soil Biology and Biochemistry
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf