Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions
Show others and affiliations
Responsible organisation
2015 (English)In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 21, no 9, 3478-3488 p.Article in journal (Refereed) Published
Abstract [en]

Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensitive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, we aimed to investigate how warming affects the BVOC emissions in the long term (up to 13 treatment years). We also aimed to assess whether the increased litterfall resulting from the vegetation changes in the warming subarctic would affect the emissions. The study was conducted in a field experiment with factorial open-top chamber warming and annual litter addition treatments on subarctic heath in Abisko, northern Sweden. After 11 and 13 treatment years, BVOCs were sampled from plant communities in the experimental plots using a push–pull enclosure technique and collection into adsorbent cartridges during the growing season and analyzed with gas chromatography–mass spectrometry. Plant species coverage in the plots was analyzed by the point intercept method. Warming by 2 °C caused a 2-fold increase in monoterpene and 5-fold increase in sesquiterpene emissions, averaged over all measurements. When the momentary effect of temperature was diminished by standardization of emissions to a fixed temperature, warming still had a significant effect suggesting that emissions were also indirectly increased. This indirect increase appeared to result from increased plant coverage and changes in vegetation composition. The litter addition treatment also caused significant increases in the emission rates of some BVOC groups, especially when combined with warming. The combined treatment had both the largest vegetation changes and the highest BVOC emissions. The increased emissions under litter addition were probably a result of a changed vegetation composition due to alleviated nutrient limitation and stimulated microbial production of BVOCs. We suggest that the changes in the subarctic vegetation composition induced by climate warming will be the major factor indirectly affecting the BVOC emission potentials and composition.

Place, publisher, year, edition, pages
2015. Vol. 21, no 9, 3478-3488 p.
Keyword [en]
Arctic, BVOCs, climate change, isoprene, monoterpene, plant volatiles, sesquiterpene, temperature, vegetation change
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-3559DOI: 10.1111/gcb.12953OAI: oai:DiVA.org:polar-3559DiVA: diva2:1096914
Available from: 2017-05-19 Created: 2017-05-19 Last updated: 2017-05-19

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://dx.doi.org/10.1111/gcb.12953
In the same journal
Global Change Biology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf