Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Determinants of parasitoid communities of willow-galling sawflies: habitat overrides physiology, host plant and space
Show others and affiliations
Responsible organisation
2015 (English)In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 24, no 19, 5059-5074 p.Article in journal (Refereed) Published
Abstract [en]

Studies on the determinants of plant–herbivore and herbivore–parasitoid associations provide important insights into the origin and maintenance of global and local species richness. If parasitoids are specialists on herbivore niches rather than on herbivore taxa, then alternating escape of herbivores into novel niches and delayed resource tracking by parasitoids could fuel diversification at both trophic levels. We used DNA barcoding to identify parasitoids that attack larvae of seven Pontania sawfly species that induce leaf galls on eight willow species growing in subarctic and arctic–alpine habitats in three geographic locations in northern Fennoscandia, and then applied distance- and model-based multivariate analyses and phylogenetic regression methods to evaluate the hierarchical importance of location, phylogeny and different galler niche dimensions on parasitoid host use. We found statistically significant variation in parasitoid communities across geographic locations and willow host species, but the differences were mainly quantitative due to extensive sharing of enemies among gallers within habitat types. By contrast, the divide between habitats defined two qualitatively different network compartments, because many common parasitoids exhibited strong habitat preference. Galler and parasitoid phylogenies did not explain associations, because distantly related arctic–alpine gallers were attacked by a species-poor enemy community dominated by two parasitoid species that most likely have independently tracked the gallers’ evolutionary shifts into the novel habitat. Our results indicate that barcode- and phylogeny-based analyses of food webs that span forested vs. tundra or grassland environments could improve our understanding of vertical diversification effects in complex plant–herbivore–parasitoid networks.

Place, publisher, year, edition, pages
2015. Vol. 24, no 19, 5059-5074 p.
Keyword [en]
community barcoding, enemy-free space, speciation, tritrophic food webs, vertical diversification effects
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-3558DOI: 10.1111/mec.13369OAI: oai:DiVA.org:polar-3558DiVA: diva2:1096911
Available from: 2017-05-19 Created: 2017-05-19 Last updated: 2017-05-19

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://dx.doi.org/10.1111/mec.13369
In the same journal
Molecular Ecology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf