Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects
Responsible organisation
2015 (English)In: Functional Ecology, ISSN 0269-8463, E-ISSN 1365-2435, Vol. 29, no 7, p. 981-991Article in journal (Refereed) Published
Abstract [en]

* The ‘home-field advantage’ (HFA) hypothesis predicts that plant litter is decomposed faster than expected underneath the plant from which it originates (‘home’) than underneath other plants (‘away’), because decomposer communities are specialized to break down litter from the plants they associate with. However, empirical evidence shows that the occurrence of HFA is highly variable, and the reasons for this are little understood. * In our study, we progress our understanding by investigating whether HFA is stronger for more recalcitrant litter types and under colder conditions and how soil properties and plant functional traits affect the magnitude and direction of HFA. * In subarctic tundra in northern Sweden, we set up a reciprocal transplant litter decomposition experiment along an elevational gradient where three highly contrasting vegetation types (heath, meadow and Salix) occur at all elevations, and where temperature decreases strongly with elevation. In this study, we used a litter bag approach where litters from each elevation × vegetation type combination were decomposed in all combinations of elevation × vegetation type. We also measured community-level plant functional traits, such as leaf and litter nutrient content. We determined soil biotic and abiotic properties, such as microbial biomass and soil nutrient content, in soil cores collected for each elevation × vegetation type combination. * We found that mass loss increased with plant and litter nutrient content and with soil temperature. In contrast, the occurrence of HFA was limited in our study system, and its magnitude and direction could not be explained by vegetation type, elevation, plant traits or soil properties, despite these factors serving as powerful drivers of litter mass loss in our study. * We conclude that although vegetation type and climate are major drivers of litter mass loss, they do not emerge as important determinants of HFA. Therefore, while rapid shifts in plant community composition or temperature due to global change are likely to influence litter mass loss directly by altering environmental conditions, plant trait spectra and litter quality, indirect effects of global change resulting from decoupling of specialist interactions between litter and decomposer communities appear to be of less importance.

Place, publisher, year, edition, pages
2015. Vol. 29, no 7, p. 981-991
Keywords [en]
global change, incubation conditions, litter–decomposer interactions, nutrient cycling, specialization, substrate quality
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-3553DOI: 10.1111/1365-2435.12421OAI: oai:DiVA.org:polar-3553DiVA, id: diva2:1096903
Available from: 2017-05-19 Created: 2017-05-19 Last updated: 2017-05-19

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://dx.doi.org/10.1111/1365-2435.12421
In the same journal
Functional Ecology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf