Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Storm-time variation of the horizontal and vertical components of the geomagnetic fields and rate of induction at different latitudes
Responsible organisation
2016 (English)In: Advances in Space Research, ISSN 0273-1177, E-ISSN 1879-1948, Vol. 58, no 7, p. 1208-1218Article in journal (Refereed) Published
Abstract [en]

The paper presents the hourly mean variation of horizontal (H) and vertical (Z) components of the geomagnetic field and the rate of induction ΔH/ΔZ at different latitudes during magnetic storm of 20 March 2001 and 1 October 2001. The results of the analysis revealed that at high latitude stations greater than 60°, the reduction in ΔH component was noticed after the noon time while other stations less than 60° experienced reduction of H in the morning time during the geomagnetic storm. Large amplitude of ΔH and ΔZ were exhibited during the daytime over the equatorial zone, the amplitude decreases from mid latitudes to the dip equator during the nighttime. The daytime enhancement of ΔH at AAE, BAN and MBO suggest the presence of a strong eastward directed current which comes under the influence of electrojet. There were strong positive and negative correlations between ring current (DR) and horizontal component of the magnetic field ΔH. The effect of rate of induction is more significant at high latitudes than lower latitudes, during the geomagnetic storm. More enhancement in rate of induction occurred at nighttime than daytime. This result may be from other sources other than the ionosphere that is magnetospheric process significantly contributes toward the variation of induction.

Place, publisher, year, edition, pages
2016. Vol. 58, no 7, p. 1208-1218
Keywords [en]
Geomagnetic field, Geomagnetic storm, Electromagnetic induction, Ring current, Coronal mass ejection
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-3511DOI: 10.1016/j.asr.2016.06.017OAI: oai:DiVA.org:polar-3511DiVA, id: diva2:1083579
Available from: 2017-03-21 Created: 2017-03-21 Last updated: 2017-11-29

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://www.sciencedirect.com/science/article/pii/S0273117716303155
In the same journal
Advances in Space Research
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 58 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf