Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tight Coupling Between Shoot Level Foliar N and P, Leaf Area, and Shoot Growth in Arctic Dwarf Shrubs Under Simulated Climate Change
Responsible organisation
2016 (English)In: Ecosystems (New York. Print), ISSN 1432-9840, E-ISSN 1435-0629, Vol. 19, no 2, 326-338 p.Article in journal (Refereed) Published
Abstract [en]

Nutrient availability limits productivity of arctic ecosystems, and this constraint means that the amount of nitrogen (N) in plant canopies is an exceptionally strong predictor of vegetation productivity. However, climate change is predicted to increase nutrient availability leading to increases in carbon sequestration and shifts in community structure to more productive species. Despite tight coupling of productivity with canopy nutrients at the vegetation scale, it remains unknown how species/shoot level foliar nutrients couple to growth, or how climate change may influence foliar nutrients–productivity relationships to drive changes in ecosystem carbon gain and community structure. We investigated the influence of climate change on arctic plant growth relationships to shoot level foliar N and phosphorus (P) in three dominant subarctic dwarf shrubs using an 18-year warming and nutrient addition experiment. We found a tight coupling between total leaf N and P per shoot, leaf area and shoot extension. Furthermore, a steeper shoot length-leaf N relationship in deciduous species (Vaccinium myrtillus and Vaccinium uliginosum) under warming manipulations suggests a greater capacity for nitrogen to stimulate growth under warmer conditions in these species. This mechanism may help drive the considerable increases in deciduous shrub cover observed already in some arctic regions. Overall, our work provides the first evidence at the shoot level of tight coupling between foliar N and P, leaf area and growth i.e. consistent across species, and provides mechanistic insight into how interspecific differences in alleviation of nutrient limitation will alter community structure and primary productivity in a warmer Arctic.

Place, publisher, year, edition, pages
2016. Vol. 19, no 2, 326-338 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-3425DOI: 10.1007/s10021-015-9936-zOAI: oai:DiVA.org:polar-3425DiVA: diva2:1079031
Available from: 2017-03-07 Created: 2017-03-07 Last updated: 2017-03-07

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://dx.doi.org/10.1007/s10021-015-9936-z
In the same journal
Ecosystems (New York. Print)
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf