Chemical mass size distributions of aerosol particles were measured in the remote marine boundary layer over the central Arctic Ocean as part of the Atmospheric Research Program on the Arctic Ocean Expedition 1996 (AOE-96). An inertial impaction method was used to classify aerosol particles into different size classes for subsequent chemical analysis. The particle chemical composition was determined by ion chromatography and by the particle-induced X-ray emission technique. Continuous particle size spectra were extracted from the raw data using a data inversion method. Clear and varying modal structures for aerosols consisting of primary sea-salt particles or of secondary particles related to dimethyl sulfide emissions were found. Concentration levels of all modes decreased rapidly when the distance from open sea increased. In the submicrometer size range the major ions found by ion chromatography were sulfate, methane sulfonate, and ammonium. They had most of the time a clear Aitken mode and one or two accumulation modes, with aerodynamic mass median diameters around 0.1 mum, 0.3 mum, and between 0.5-1.0 mum, respectively. The overall submicron size distributions of these three ions were quite similar, suggesting that they were internally mixed over most of this size range. The corresponding modal structure was consistent with the mass size distributions derived from the particle number size distributions measured with a differential mobility particle sizer. The Aitken to accumulation mode mass ratio for nss-sulfate and MSA was substantially higher during clear skies than during cloudy periods. Primary sea-salt particles formed a mode with an aerodynamic mass median diameter around 2 mum. In general, the resulting continuous mass size distributions displayed a clear modal structure consistent with our understanding of the two known major source mechanisms. One is the sea-salt aerosol emerging from seawater by bubble bursting. The other is related to dimethylsulfide (DMS) emissions from biogenic processes in seawater, followed by gas-to-particle conversion, formation of particulate sulfate and methane sulfonate (MSA) and neutralization by ammonia.