Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mesoscale Variability in the Summer Arctic Boundary Layer
Responsible organisation
2009 (English)In: Boundary-layer Meteorology, ISSN 0006-8314, E-ISSN 1573-1472, Vol. 130, no 3, 383-406 p.Article in journal (Refereed) Published
Abstract [en]

Observations from the summer Arctic Ocean Experiment 2001 (AOE-2001) are analysed with a focus on the interactions between mesoscale and boundary-layer dynamics. Wavelet analyses of surface-pressure variations show daylong periods with different characteristics, some featuring episodes of pronounced high-frequency surface-pressure variability, here hypothesized to be caused by trapped gravity waves. These episodes are accompanied by enhanced boundary-layer turbulence and an enhanced spectral gap, but with only minor influence on the surface stress. During these episodes, mesoscale phenomena were often encountered and usually identified as front-like features in the boundary layer, with a peak in drizzle followed by changing temperature. These phenomena resemble synoptic fronts, though they are generally shallow, shorter-lasting, have no signs of frontal clouds, and do not imply a change in air mass. Based on this analysis, we hypothesize that the root cause of the episodes with high-frequency surface-pressure variance are shallow, mesoscale fronts moving across the pack ice. They may be formed due to local-to-regional horizontal contrasts, for example, between air with different lifetimes over the Arctic or with perturbations in the cloud field causing differential cooling of the boundary layer. Thermal contrasts sharpen as the air is transported with the mean flow. The propagating mesoscale fronts excite gravity waves, which affect the boundary-layer turbulence and also seem to favour entrainment of free tropospheric air into the boundary layer.

Place, publisher, year, edition, pages
2009. Vol. 130, no 3, 383-406 p.
Keyword [en]
Arctic; Arctic climate; Arctic boundary layer; Boundary-layer clouds; Ducted buoyancy waves; Mesoscale circulation; Mesoscale fronts
National Category
Natural Sciences
Research subject
SWEDARCTIC 2001, Arctic Ocean 2001
Identifiers
URN: urn:nbn:se:polar:diva-3117DOI: 10.1007/s10546-009-9354-xOAI: oai:DiVA.org:polar-3117DiVA: diva2:1050058
Available from: 2016-11-28 Created: 2016-11-21 Last updated: 2016-11-28

Open Access in DiVA

No full text

Other links

Publisher's full text
In the same journal
Boundary-layer Meteorology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf