Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer
Show others and affiliations
Responsible organisation
2001 (English)In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 106, no D23, 32111-32123 p.Article in journal (Refereed) Published
Abstract [en]

The hygroscopic properties of submicrometer aerosol particles in the Arctic summer marine boundary layer (MBL) were observed on board the icebreaker Oden during the Arctic Ocean Expedition 1996 (AOE-96). The measurements were performed between July 15 and August 25 1996 and covered the region between longitudes 16degrees-147degreesE and latitudes 70degrees-87.5degreesN, mostly over melting pack ice. The hygroscopic tandem differential mobility analyzer (H-TDMA) was used to determine the hygroscopic diameter growth of aerosol particles at four dry diameters (15, 35, 50, and 165 nm) and three relative humidities (50%, 70%, and 90% RH). The hygroscopic behavior of the aerosol particles over the pack ice showed large temporal variations, in contrast to previous observations in marine boundary layers over warmer oceans. These variations were mostly due to the high degree of vertical atmospheric stratification often observed over the pack ice. However, when comparing the average diameter growth factors of the more hygroscopic particle group, representing an aged aerosol with growth factors between 1.4-1.9 at 90% RH and present in 81-86% of all cases, the agreement between the measurements over the Arctic and the warmer oceans was very good and depended on the average wind speed. The average diameter growth factors of the more hygroscopic particles as a function of relative humidity were modeled empirically by power law expressions. The concentration of cloud condensation nuclei (CCN) estimated from aerosol number size distribution and hygroscopic growth data correlated well with direct measurements but overpredicted the CCN concentrations by about 30%. In 43 cases when the sampled air mass had undergone processing in Arctic Ocean MBL clouds, the minimum CCN diameter was estimated to be 76 +/- 15 nm, corresponding to effective water vapor supersaturations of 0.28 +/- 0.08%.

Place, publisher, year, edition, pages
2001. Vol. 106, no D23, 32111-32123 p.
National Category
Natural Sciences
Research subject
SWEDARCTIC 1996, Arctic Ocean 1996
Identifiers
URN: urn:nbn:se:polar:diva-3246DOI: 10.1029/2000JD900426OAI: oai:DiVA.org:polar-3246DiVA: diva2:1049854
Available from: 2016-11-25 Created: 2016-11-21 Last updated: 2016-11-25

Open Access in DiVA

No full text

Other links

Publisher's full text
In the same journal
Journal of Geophysical Research - Atmospheres
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf