A novel continuous equilibrium system with high time resolution, i.e. every ten minutes, was developed to sample and determine dissolved gaseous mercury (DGM) in natural surface waters. The system is based on the opposite flow principle, can be connected to a ship’s bow water system, and can be applied under most ambient conditions, such as high wind speeds and onboard a moving ship. For the DGM determination the system uses the measured equilibrium concentration of mercury established between the aqueous and gaseous phases, i.e. DGM = Hg(extr) / k (H’), where Hg(extr) is the measured mercury concentration in the outgoing gas phase and k(H’) is the dimensionless Henry’s Law constant at the desired temperature and salinity. The efficiency of the system was investigated via theoretical calculations and by comparing the continuous equilibrium system with discrete samples. The measurements obtained by the continuous equilibrium system agree within 13% at the 95% confidence level with the measurements of discrete samples obtained by the traditional technique. The theoretical calculations estimated that the continuous equilibrium system described here had an efficiency of 99% for determining the DGM concentration.