Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Early season depletion of dissolved iron in the Ross Sea polynya: Implications for iron dynamics on the Antarctic continental shelf
Show others and affiliations
Responsible organisation
2011 (English)In: Journal of Geophysical Research - Oceans, ISSN 2169-9275, E-ISSN 2169-9291, Vol. 116Article in journal (Refereed) Published
Abstract [en]

The Ross Sea polynya is among the most productive regions in the Southern Ocean and may constitute a significant oceanic CO2 sink. Based on results from several field studies, this region has been considered seasonally iron limited, whereby a “winter reserve” of dissolved iron (dFe) is progressively depleted during the growing season to low concentrations (similar to 0.1 nM) that limit phytoplankton growth in the austral summer (December-February). Here we report new iron data for the Ross Sea polynya during austral summer 2005-2006 (27 December-22 January) and the following austral spring 2006 (16 November-3 December). The summer 2005-2006 data show generally low dFe concentrations in polynya surface waters (0.10 +/- 0.05 nM in upper 40 m, n = 175), consistent with previous observations. Surprisingly, our spring 2006 data reveal similar low surface dFe concentrations in the polynya (0.06 +/- 0.04 nM in upper 40 m, n = 69), in association with relatively high rates of primary production (similar to 170-260 mmol C m(-2) d(-1)). These results indicate that the winter reserve dFe may be consumed relatively early in the growing season, such that polynya surface waters can become “iron limited” as early as November; i.e., the seasonal depletion of dFe is not necessarily gradual. Satellite observations reveal significant biomass accumulation in the polynya during summer 2006-2007, implying significant sources of “new” dFe to surface waters during this period. Possible sources of this new dFe include episodic vertical exchange, lateral advection, aerosol input, and reductive dissolution of particulate iron.

Place, publisher, year, edition, pages
2011. Vol. 116
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-3036DOI: 10.1029/2010JC006553OAI: oai:DiVA.org:polar-3036DiVA, id: diva2:1045993
Available from: 2016-11-11 Created: 2016-10-27 Last updated: 2017-11-29

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
In the same journal
Journal of Geophysical Research - Oceans
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 39 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf