Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Towards ground truthing exploration in the central Arctic Ocean: a Cenozoic compaction history from the Lomonosov Ridge
Show others and affiliations
Responsible organisation
2010 (English)In: Basin Research, ISSN 0950-091X, E-ISSN 1365-2117, Vol. 22, no 2, p. 215-235Article in journal (Refereed) Published
Abstract [en]

The Integrated Ocean Drilling Program’s Expedition 302, the Arctic Coring Expedition (ACEX), recovered the first Cenozoic sedimentary sequence from the central Arctic Ocean. ACEX provided ground truth for basin scale geophysical interpretations and for guiding future exploration targets in this largely unexplored ocean basin. Here, we present results from a series of consolidation tests used to characterize sediment compressibility and permeability and integrate these with high-resolution measurements of bulk density, porosity and shear strength to investigate the stress history and the nature of prominent lithostratigraphic and seismostratigraphic boundaries in the ACEX record. Despite moderate sedimentation rates (10-30 m Myr-1) and high permeability values (10-15-10-18 m2), consolidation and shear strength measurements both suggest an overall state of underconsolidation or overpressure. One-dimensional compaction modelling shows that to maintain such excess pore pressures, an in situ fluid source is required that exceeds the rate of fluid expulsion generated by mechanical compaction alone. Geochemical and sedimentological evidence is presented that identifies the Opal A-C/T transformation of biosiliceous rich sediments as a potential additional in situ fluid source. However, the combined rate of chemical and mechanical compaction remain too low to fully account for the observed pore pressure gradients, implying an additional diagenetic fluid source from within or below the recovered Cenozoic sediments from ACEX. Recognition of the Opal A-C/T reaction front in the ACEX record has broad reaching regional implications on slope stability and subsurface pressure evolution, and provides an important consideration for interpreting and correlating the spatially limited seismic data from the Arctic Ocean.

Place, publisher, year, edition, pages
2010. Vol. 22, no 2, p. 215-235
National Category
Natural Sciences
Research subject
SWEDARCTIC 2004, ACEX
Identifiers
URN: urn:nbn:se:polar:diva-3091DOI: 10.1111/j.1365-2117.2009.00403.xOAI: oai:DiVA.org:polar-3091DiVA, id: diva2:1044939
Available from: 2016-11-07 Created: 2016-10-27 Last updated: 2017-11-29

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
In the same journal
Basin Research
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf