Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing
Stockholm Univ, Dept Meteorol, S-10691 Stockholm, Sweden..
Stockholm Univ, Dept Meteorol, S-10691 Stockholm, Sweden..ORCID iD: 0000-0002-6908-7410
Max Planck Inst Meteorol, Hamburg, Germany..
Univ Colorado, Boulder, CO 80309 USA.;NOAA ESRL PSD, Boulder, CO USA..ORCID iD: 0000-0002-0973-9982
Show others and affiliations
Responsible organisation
2011 (English)In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 37, no 7-8, p. 1643-1660Article in journal (Refereed) Published
Abstract [en]

Snow surface and sea-ice energy budgets were measured near 87.5A degrees N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7A degrees C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m(-2) and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m(-2), except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area.

Place, publisher, year, edition, pages
2011. Vol. 37, no 7-8, p. 1643-1660
Keywords [en]
Arctic, Sea ice, Surface energy budget, Cloud radiative forcing, Shortwave radiation, Longwave radiation
National Category
Natural Sciences
Research subject
SWEDARCTIC 2008, ASCOS
Identifiers
URN: urn:nbn:se:polar:diva-2333DOI: 10.1007/s00382-010-0937-5ISI: 000295522600022OAI: oai:DiVA.org:polar-2333DiVA, id: diva2:858467
Available from: 2015-10-02 Created: 2015-10-02 Last updated: 2021-11-30

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Tjernström, MichaelShupe, Matthew D.Brooks, Ian M.Nicolaus, Marcel
In the same journal
Climate Dynamics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf