Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Volatile organic compound emissions from subarctic mosses and lichens
Show others and affiliations
Responsible organisation
2022 (English)In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 290, article id 119357Article in journal (Refereed) Published
Abstract [en]

Plant volatile organic compound (VOC) emissions can drive important climate feedbacks. Although mosses and lichens are important components of plant communities, their VOC emissions are poorly understood. It is crucial to obtain more knowledge on moss and lichen VOCs to improve ecosystem VOC emission models. This is especially relevant at high latitudes, where mosses and lichens are abundant and VOC emissions are expected to increase in response to climate change. In this study, we examined VOC emissions from four common moss (Hylocomium splendens, Pleurozium schreberi, Sphagnum warnstorfii, and Tomentypnum nitens) and lichen (Cladonia arbuscula, Cladonia mitis, Cladonia pleurota, and Nephroma arcticum) species in the Subarctic using gas chromatography-mass spectrometry (GC-MS) and proton-transfer-reaction time-of-flight mass spectrometry. Moss and lichen VOC emissions were dominated by low molecular weight (LMW) VOCs, such as acetone and acetaldehyde, as well as hydrocarbons (HCs) and oxygenated VOCs (oVOCs). Of the studied mosses, S. warnstrofii had the highest and H. splendens had the lowest total VOC emission rates. The VOC emission blends of P. schreberi, S. warnstrofii, and T. nitens were clearly distinct from one another. Of the lichens, N. arcticum had a different VOC blend than the Cladonia spp. N. arcticum also had higher emission rates of HCs, oVOCs, and other GC-MS-based VOCs, but lower LMW VOC emission rates than the other lichen species. Our study demonstrates that mosses and lichens emit considerable amounts of various VOCs and that these emissions are species dependent.

Place, publisher, year, edition, pages
2022. Vol. 290, article id 119357
Keywords [en]
Bryophytes, Cryptogams, Terpenoids, Biogenic volatile organic compounds, Tundra, VOC emission
National Category
Ecology
Identifiers
URN: urn:nbn:se:polar:diva-8995DOI: 10.1016/j.atmosenv.2022.119357OAI: oai:DiVA.org:polar-8995DiVA, id: diva2:1727061
Available from: 2023-01-14 Created: 2023-01-14 Last updated: 2023-01-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://www.sciencedirect.com/science/article/pii/S1352231022004228
In the same journal
Atmospheric Environment
Ecology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 71 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf