Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A song of ice and mud: Interactions of microbes with roots, fauna and carbon in warming permafrost-affected soils
Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.ORCID-id: 0000-0001-9923-2036
Ansvarig organisation
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)Alternativ titel
Sagan om is och gyttja: interaktioner mellan mikrober och rötter, fauna och kol när permafrost-påverkade marker värms upp (Svenska)
Abstract [en]

Permafrost-affected soils store a large quantity of soil organic matter (SOM) – ca. half of worldwide soil carbon – and currently undergo rapid and severe warming due to climate change. Increased SOM decomposition by microorganisms and soil fauna due to climate change, poses the risk of a positive climate feedback through the release of greenhouse gases. Direct effects of climate change on SOM decomposition, through such mechanisms as deepening of the seasonally-thawing active layer and increasing soil temperatures, have gathered considerable scientific attention in the last two decades. Yet, indirect effects mediated by changes in plant, microbial, and fauna communities, remain poorly understood. Microbial communities, which may be affected by climate change-induced changes in vegetation composition or rooting patterns, and may in turn affect SOM decomposition, are the primary focus of the work described in this thesis.

We used (I) a field-scale permafrost thaw experiment in a palsa peatland, (II) a laboratory incubation of Yedoma permafrost with inoculation by exotic microorganisms, (III) a microcosm experiment with five plant species grown either in Sphagnum peat or in newly-thawed permafrost peat, and (IV) a field-scale cold season warming experiment in cryoturbated tundra to address the indirect effects of climate change on microbial drivers of SOM decomposition. Community composition data for bacteria and fungi were obtained by amplicon sequencing and phospholipid fatty acid extraction, and for collembola by Tullgren extraction, alongside measurements of soil chemistry, CO2 emissions and root density.

We showed that in situ thawing of a palsa peatland caused colonization of permafrost soil by overlying soil microbes. Further, we observed that functional limitations of permafrost microbial communities can hamper microbial metabolism in vitro. Relieving these functional limitations in vitro increased cumulative CO2 emissions by 32% over 161 days and introduced nitrification. In addition, we found that different plant species did not harbour different rhizosphere bacterial communities in Sphagnum peat topsoil, but did when grown in newly-thawed permafrost peat. Plant species may thus differ in how they affect functional limitations in thawing permafrost soil. Therefore, climate change-induced changes in vegetation composition might alter functioning in the newly-thawed, subsoil permafrost layer of northern peatlands, but less likely so in the topsoil. Finally, we observed that vegetation encroachment in barren cryoturbated soil, due to reduced cryogenic activity with higher temperatures, change both bacterial and collembola community composition, which may in turn affect soil functioning.

This thesis shows that microbial community dynamics and plant-decomposer interactions play an important role in the functioning of warming permafrost-affected soils. More specifically, it demonstrates that the effects of climate change on plants can trickle down on microbial communities, in turn affecting SOM decomposition in thawing permafrost.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University , 2018. , s. 37
Nyckelord [en]
microbial communities, permafrost, functional limitations, rhizosphere, SOM decomposition, soil fauna, climate change, carbon dioxide
Nationell ämneskategori
Ekologi Miljövetenskap Klimatforskning Mikrobiologi Geokemi
Identifikatorer
URN: urn:nbn:se:polar:diva-7804ISBN: 978-91-7601-928-3 (tryckt)OAI: oai:DiVA.org:polar-7804DiVA, id: diva2:1281728
Disputation
2018-09-28, N430, Naturvetarhuset, Umeå, 10:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, KAW 2012.0152Forskningsrådet Formas, Dnr 214-2011-788Vetenskapsrådet, Dnr 621-2011-5444Tillgänglig från: 2019-01-23 Skapad: 2019-01-23 Senast uppdaterad: 2019-01-23Bibliografiskt granskad
Delarbeten
1. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration
Öppna denna publikation i ny flik eller fönster >>Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration
Visa övriga...
2018 (Engelska)Ingår i: The ISME Journal, ISSN 1751-7362, E-ISSN 1751-7370, Vol. 12, s. 2129-2141Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The decomposition of large stocks of soil organic carbon in thawing permafrost might depend on more than climate change-induced temperature increases: indirect effects of thawing via altered bacterial community structure (BCS) or rooting patterns are largely unexplored. We used a 10-year in situ permafrost thaw experiment and aerobic incubations to investigate alterations in BCS and potential respiration at different depths, and the extent to which they are related with each other and with root density. Active layer and permafrost BCS strongly differed, and the BCS in formerly frozen soils (below the natural thawfront) converged under induced deep thaw to strongly resemble the active layer BCS, possibly as a result of colonization by overlying microorganisms. Overall, respiration rates decreased with depth and soils showed lower potential respiration when subjected to deeper thaw, which we attributed to gradual labile carbon pool depletion. Despite deeper rooting under induced deep thaw, root density measurements did not improve soil chemistry-based models of potential respiration. However, BCS explained an additional unique portion of variation in respiration, particularly when accounting for differences in organic matter content. Our results suggest that by measuring bacterial community composition, we can improve both our understanding and the modeling of the permafrost carbon feedback.

Nationell ämneskategori
Naturvetenskap
Identifikatorer
urn:nbn:se:polar:diva-7787 (URN)10.1038/s41396-018-0176-z (DOI)
Tillgänglig från: 2019-01-22 Skapad: 2019-01-22 Senast uppdaterad: 2019-01-23Bibliografiskt granskad

Open Access i DiVA

fulltext(3573 kB)243 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3573 kBChecksumma SHA-512
c0246e5b8f7515a9ba4499a2efc919a92c493ca1994afd83c6f591cfc79a71f393fd4e6cd9da2aa4350822aacb7aaae6ce04639f827dabb23f31f4d042a769b0
Typ fulltextMimetyp application/pdf
spikblad(411 kB)78 nedladdningar
Filinformation
Filnamn SPIKBLAD01.pdfFilstorlek 411 kBChecksumma SHA-512
b2af560a79acbde5959d8bb4507c1303716442a2603dedc5b3faa0f0f153413cb021f1bde65e46e6503e5c45862c72430dd43f58f42782589ef6b9a5dbf092db
Typ spikbladMimetyp application/pdf

Övriga länkar

preview image

Sök vidare i DiVA

Av författaren/redaktören
Monteux, Sylvain
EkologiMiljövetenskapKlimatforskningMikrobiologiGeokemi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 243 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 496 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf