Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A novel NIR spectral calibration method: Sparse coefficients wavelength selection and regression (SCWR)
Ansvarig organisation
2020 (Engelska)Ingår i: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, nr 1110, s. 169-180Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A sparse coefficients wavelength selection and regression (SCWR) method is proposed in the present study. SCWR can rapidly and simultaneously operate regression and select wavelengths on NIR datasets with multiple response variables without any random procedure and cross-validation in the model. The method expresses a normal spectral calibration as a form of least absolute shrinkage and selection operator (LASSO), then the problem is reformulated into the alternative direction multiplier method (ADMM) form. Sparse coefficients wavelength selection (SCWS) method is developed by planting a positive-negative counteract strategy into SCWR, it can select a specified number of wavelengths. A specified number SCWR (NSCWR) is also suggested in order to perform regression using a specified number of wavelengths. SCWR methods have been tested on three NIR datasets (potato, corn, and soil), and these methods have better performance and use fewer feature wavelengths than existing simultaneous regression and wavelength selection methods on predicting almost all attributes in these datasets. Results indicate that SCWR-based methods could select wavelengths with more useful information. For the determination of hyperparameters in SCWR, manual adjustment of hyperparameters is available on sparsity control because the regression performance of SCWR is robustness and insensitive when hyperparameters are in proper ranges.

Ort, förlag, år, upplaga, sidor
2020. nr 1110, s. 169-180
Nyckelord [en]
SCWS, NSCWR, Simultaneous regression and wavelengths selection, Chemometrics, NIR spectral calibration
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:polar:diva-8509DOI: 10.1016/j.aca.2020.03.007OAI: oai:DiVA.org:polar-8509DiVA, id: diva2:1517078
Tillgänglig från: 2021-01-13 Skapad: 2021-01-13 Senast uppdaterad: 2021-01-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltexthttp://www.sciencedirect.com/science/article/pii/S0003267020303147
I samma tidskrift
Analytica Chimica Acta
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 27 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf