Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Determining Subarctic Peatland Vegetation Using an Unmanned Aerial System (UAS)
Visa övriga samt affilieringar
Ansvarig organisation
2018 (Engelska)Ingår i: Remote Sensing, ISSN 2072-4292, E-ISSN 2072-4292, Vol. 10, nr 9, s. 1-20, artikel-id 1498Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Rising global temperatures tied to increases in greenhouse gas emissions are impacting high latitude regions, leading to changes in vegetation composition and feedbacks to climate through increased methane (CH4) emissions. In subarctic peatlands, permafrost collapse has led to shifts in vegetation species on landscape scales with high spatial heterogeneity. Our goal was to provide a baseline for vegetation distribution related to permafrost collapse and changes in biogeochemical processes. We collected unmanned aerial system (UAS) imagery at Stordalen Mire, Abisko, Sweden to classify vegetation cover types. A series of digital image processing routines were used to generate texture attributes within the image for the purpose of characterizing vegetative cover types. An artificial neural network (ANN) was developed to classify the image. The ANN used all texture variables and color bands (three spectral bands and six metrics) to generate a probability map for each of the eight cover classes. We used the highest probability for a class at each pixel to designate the cover type in the final map. Our overall misclassification rate was 32%, while omission and commission error by class ranged from 0% to 50%. We found that within our area of interest, cover classes most indicative of underlying permafrost (hummock and tall shrub) comprised 43.9% percent of the landscape. Our effort showed the capability of an ANN applied to UAS high-resolution imagery to develop a classification that focuses on vegetation types associated with permafrost status and therefore potentially changes in greenhouse gas exchange. We also used a method to examine the multiple probabilities representing cover class prediction at the pixel level to examine model confusion. UAS image collection can be inexpensive and a repeatable avenue to determine vegetation change at high latitudes, which can further be used to estimate and scale corresponding changes in CH4 emissions.

Ort, förlag, år, upplaga, sidor
2018. Vol. 10, nr 9, s. 1-20, artikel-id 1498
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:polar:diva-7943DOI: 10.3390/rs10091498OAI: oai:DiVA.org:polar-7943DiVA, id: diva2:1284301
Tillgänglig från: 2019-01-31 Skapad: 2019-01-31 Senast uppdaterad: 2019-01-31Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltexthttp://www.mdpi.com/2072-4292/10/9/1498
I samma tidskrift
Remote Sensing
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 2 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf