Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effects of acute temperature changes on gut physiology in two species of sculpin from the west coast of Greenland
Vise andre og tillknytning
Ansvarlig organisasjon
2013 (engelsk)Inngår i: Polar Biology, ISSN 0722-4060, E-ISSN 1432-2056, Vol. 36, nr 6, s. 775-785Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

For a fish to thrive, the gut must function efficiently. This is achieved through a range of processes, including controlled patterns of gut motility and modifications in gut blood flow. The knowledge of how gut functions in fish are affected by environmental temperature is sparse, and in order to understand how changes in climate may affect fish populations, we need to understand how gut blood flow and gut motility are affected by changes in temperature. By simultaneous recording of gut blood flow, gut motility, cardiac output, heart rate and cardiac stroke volume, in vivo at 4, 9 and 14 A degrees C, the acute thermal sensitivity of a thermal generalist (shorthorn sculpin Myoxocephalu scorpius) was compared to the more strictly Arctic species (Arctic sculpin M. scorpioides). Temperature effects on gut motility were further explored in vitro, using isolated smooth muscles. Elevated water temperatures increased gut blood flow and contractile activity. Contraction frequency increased nearly threefold and gut blood flow almost doubled with the 10 A degrees C increase. Both cardiac output and heart rate increased with temperature, while cardiac stroke volume decreased. The cholinergic agonist carbachol was most potent on smooth muscles at 9 A degrees C. There were no differences between the two species, suggesting that the gastrointestinal and cardiovascular systems of Arctic sculpin, although a more pronounced Arctic species, have similar abilities to cope with acute fluctuations in water temperature as shorthorn sculpin. The impact of increased gut activity at higher temperatures needs further investigation before the effects of climate change can be predicted.

sted, utgiver, år, opplag, sider
2013. Vol. 36, nr 6, s. 775-785
Emneord [en]
Gut blood flow; Gut motility; Enteric electrical activity; Cardiac output; Heart rate; Cardiac stroke volume
HSV kategori
Identifikatorer
URN: urn:nbn:se:polar:diva-2893DOI: 10.1007/s00300-013-1301-0OAI: oai:DiVA.org:polar-2893DiVA, id: diva2:954485
Tilgjengelig fra: 2016-08-22 Laget: 2016-08-22 Sist oppdatert: 2017-11-28

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst
I samme tidsskrift
Polar Biology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 15 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf