Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Increasing non-linearity of the storage-discharge relationship in sub-Arctic catchments
Vise andre og tillknytning
Ansvarlig organisasjon
2020 (engelsk)Inngår i: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 34, nr 19, s. 3894-3909Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The Arctic is warming at an unprecedented rate. We hypothesis that as seasonally frozen soils thaw and recede in extent as a response to this warming, flow path diversity and thus hydrologic connectivity increases. This enhanced hydrologic connectivity then increases the non-linearity of the storage-discharge relationship in a catchment. The objective of this study is to test this hypothesis by quantifying trends and spatio-temporal differences in the degree of linearity in the storage-discharge relationships for 16 catchments within Northern Sweden from 1950 to 2018. We demonstrate a clear increase in non-linearity of the storage-discharge relationship over time for all catchments with 75% showing a statistically significant increase in non-linearity. Spring has significantly more linear storage-discharge relationships than summer for most catchments (75%) supporting the idea that seasonally frozen soils with a low degree of hydrological connectivity have a linear storage-discharge relationship. For the period considered, spring also showed greater change in storage-discharge relationship trends than summer signifying that changes in recessions are primarily occurring during the thawing period. Separate storage-discharge analyses combined with preceding winter conditions demonstrated that especially cold winters with little snow yielded springs and summers with more linear storage-discharge relationships. We show that streamflow recession analysis reflects ongoing hydrological change of an arctic landscape as well as offering new metrics for tracking change across arctic and sub-arctic landscapes.

sted, utgiver, år, opplag, sider
John Wiley & Sons, Ltd , 2020. Vol. 34, nr 19, s. 3894-3909
Emneord [en]
arctic hydrology, recession analysis, seasonally frozen soil, storage-discharge, thaw
HSV kategori
Identifikatorer
URN: urn:nbn:se:polar:diva-8633DOI: 10.1002/hyp.13860OAI: oai:DiVA.org:polar-8633DiVA, id: diva2:1519425
Tilgjengelig fra: 2021-01-18 Laget: 2021-01-18 Sist oppdatert: 2021-01-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttps://doi.org/10.1002/hyp.13860
I samme tidsskrift
Hydrological Processes

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 50 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf