Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fabry-Perot Interferometer Observations of Thermospheric Horizontal Winds During Magnetospheric Substorms
Vise andre og tillknytning
Ansvarlig organisasjon
2019 (engelsk)Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 124, nr 5, s. 3709-3728Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The high-latitude ionosphere-thermosphere system is strongly affected by the magnetospheric energy input during magnetospheric substorms. In this study, we investigate the response of the upper thermospheric winds to four substorm events by using the Fabry-Perot interferometer at Troms?, Norway, the International Monitor for Auroral Geomagnetic Effects magnetometers, the EISCAT radar, and an all-sky camera. The upper thermospheric winds had distinct responses to substorm phases. During the growth phase, westward acceleration of the wind was observed in the premidnight sector within the eastward electrojet region. We suggest that the westward acceleration of the neutral wind is caused by the ion drag force associated with the large-scale westward plasma convection within the eastward electrojet. During the expansion phase, the zonal wind had a prompt response to the intensification of the westward electrojet (WEJ) overhead Troms?. The zonal wind was accelerated eastward, which is likely to be associated with the eastward plasma convection within the substorm current wedge. During the expansion and recovery phases, the meridional wind was frequently accelerated to the southward direction, when the majority of the substorm WEJ current was located on the poleward side of Troms?. We suggest that this meridional wind acceleration is related to a pressure gradient produced by Joule heating within the substorm WEJ region. In addition, strong atmospheric gravity waves during the expansion and the recovery phases were observed.

sted, utgiver, år, opplag, sider
John Wiley & Sons, Ltd , 2019. Vol. 124, nr 5, s. 3709-3728
Emneord [en]
upper thermospheric winds, magnetospheric substorms, ionosphere-thermosphere coupling, auroral electrojets, Fabry-Perot interferometer, EISCAT incoherent scatter radar
HSV kategori
Identifikatorer
URN: urn:nbn:se:polar:diva-8366DOI: 10.1029/2018JA026241OAI: oai:DiVA.org:polar-8366DiVA, id: diva2:1395871
Tilgjengelig fra: 2020-02-24 Laget: 2020-02-24 Sist oppdatert: 2020-02-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttps://doi.org/10.1029/2018JA026241
I samme tidsskrift
Journal of Geophysical Research - Space Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 122 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf