Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dwelling in the deep – strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil
Vise andre og tillknytning
Ansvarlig organisasjon
2019 (engelsk)Inngår i: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 223, nr 3, s. 1328-1339Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Summary Climate-warming-induced permafrost thaw exposes large amounts of carbon and nitrogen in soil at considerable depths, below the seasonally thawing active layer. The extent to which plant roots can reach and interact with these hitherto detached, deep carbon and nitrogen stores remains unknown. We aimed to quantify how permafrost thaw affects root dynamics across soil depths and plant functional types compared with above-ground abundance, and potential consequences for plant?soil interactions. A decade of experimental permafrost thaw strongly increased total root length and growth in the active layer, and deep roots invaded the newly thawed permafrost underneath. Root litter input to soil across all depths was 10 times greater with permafrost thaw. Root growth timing was unaffected by experimental permafrost thaw but peaked later in deeper soil, reflecting the seasonally receding thaw front. Deep-rooting species could sequester 15N added at the base of the ambient active layer in October, which was after root growth had ceased. Deep soil organic matter that has long been locked up in permafrost is thus no longer detached from plant processes upon thaw. Whether via nutrient uptake, carbon storage, or rhizosphere priming, plant root interactions with thawing permafrost soils may feed back on our climate both positively and negatively.

sted, utgiver, år, opplag, sider
John Wiley & Sons, Ltd , 2019. Vol. 223, nr 3, s. 1328-1339
Emneord [en]
arctic tundra, Eriophorum, fine roots, minirhizotrons, peatland, root biomass, root litter, root phenology
HSV kategori
Identifikatorer
URN: urn:nbn:se:polar:diva-8320DOI: 10.1111/nph.15903OAI: oai:DiVA.org:polar-8320DiVA, id: diva2:1395527
Tilgjengelig fra: 2020-02-23 Laget: 2020-02-23 Sist oppdatert: 2020-02-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttps://doi.org/10.1111/nph.15903
I samme tidsskrift
New Phytologist

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 104 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf