Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Long-term microbial control of nutrient availability and plant biomass in a subarctic-alpine heath after addition of carbon, fertilizer and fungicide
Ansvarlig organisasjon
2011 (engelsk)Inngår i: Soil Biology and Biochemistry, ISSN 0038-0717, E-ISSN 1879-3428, Vol. 43, nr 1, s. 179-187Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A long-term field experiment lasting more than a decade was conducted on a subarctic fellfield to investigate effects of changes in nutrient availability on soil microbial C, N and P, soil nutrients, vascular plant biomass and plant-microbial interactions. Additions of NPK fertilizer, labile C (sugar) and fungicide (benomyl) were done in a fully factorial design, replicated in six blocks. The treatments were run for ten years and soil and vegetation samples were collected four years after initiating the experiment, and again after an additional 12 years, to evaluate the long-term effects. Labile C addition resulted in increased microbial biomass and nutrient immobilization after four years, and a long-term decrease in vascular plant biomass, thus suggesting the microorganisms to strongly control soil nutrient availability in periods of high microbial biomass. Fertilization increased the inorganic and total soil nutrient pools of N and P and the fine root biomass, but not the total aboveground vascular plant biomass. The vascular plant biomass increased due to benomyl addition thus indicating the plants to be strongly affected by the microbial community. Overall, the effects of benomyl resulted in more lasting changes in the soil compared to labile C and fertilizer addition. In relation to environmental changes, the indicated strong microbial control of the available nutrients in the fellfield ecosystem might limit ecosystem changes due to increased soil nutrient availability as otherwise expected in arctic soils.

sted, utgiver, år, opplag, sider
2011. Vol. 43, nr 1, s. 179-187
Emneord [en]
Alpine heath ecosystem, Benomyl, Fungicide, Nitrogen, Phosphorus, Labile carbon, Subarctic fellfield
HSV kategori
Identifikatorer
URN: urn:nbn:se:polar:diva-8205DOI: 10.1016/j.soilbio.2010.09.032OAI: oai:DiVA.org:polar-8205DiVA, id: diva2:1296871
Tilgjengelig fra: 2019-03-18 Laget: 2019-03-18 Sist oppdatert: 2019-03-18

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttp://www.sciencedirect.com/science/article/pii/S0038071710003652
I samme tidsskrift
Soil Biology and Biochemistry

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 9 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf