Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evidence of the ‘plant economics spectrum’ in a subarctic flora
Ansvarlig organisasjon
2010 (engelsk)Inngår i: Journal of Ecology, Vol. 98, nr 2, s. 362-373Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

1. A fundamental trade‐off among vascular plants between traits inferring rapid resource acquisition and those leading to conservation of resources has now been accepted broadly, but is based on empirical data with a strong bias towards leaf traits. Here, we test whether interspecific variation in traits of different plant organs obeys this same trade‐off and whether within‐plant trade‐offs are consistent between organs.

2. Thereto, we measured suites of the same chemical and structural traits from the main vegetative organs for a species set representing aquatic, riparian and terrestrial environments including the main vascular higher taxa and growth forms of a subarctic flora. The traits were chosen to have consistent relevance for plant defence and growth across organs and environments: carbon, nitrogen, phosphorus, lignin, dry matter content, pH.

3. Our analysis shows several new trait correlations across leaves, stems and roots and a striking pattern of whole‐plant integrative resource economy, leading to tight correspondence between the local leaf economics spectrum and the root (r = 0.64), stem (r = 0.78) and whole‐plant (r = 0.93) economics spectra.

4. Synthesis. Our findings strongly suggest that plant resource economics is consistent across species’ organs in a subarctic flora. We provide thus the first evidence for a ‘plant economics spectrum’ closely related to the local subarctic ‘leaf economics spectrum’. Extending that concept to other biomes is, however, necessary before any generalization might be made. In a world facing rapid vegetation change, these results nevertheless bear considerable prospects of predicting below‐ground plant functions from the above‐ground components alone.

sted, utgiver, år, opplag, sider
2010. Vol. 98, nr 2, s. 362-373
Emneord [en]
dry matter content, growth form, nutrient content, phylogeny, plant trait, specific leaf area, terrestrial and aquatic environments, trade-off, vegetative organs
HSV kategori
Identifikatorer
URN: urn:nbn:se:polar:diva-8125DOI: 10.1111/j.1365-2745.2009.01615.xOAI: oai:DiVA.org:polar-8125DiVA, id: diva2:1288745
Tilgjengelig fra: 2019-02-14 Laget: 2019-02-14 Sist oppdatert: 2019-02-14

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttps://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2745.2009.01615.x

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 2 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf