Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Information Theory to Determine Optimum Pixel Size and Shape for Ecological Studies: Aggregating Land Surface Characteristics in Arctic Ecosystems
Vise andre og tillknytning
Ansvarlig organisasjon
2009 (engelsk)Inngår i: Ecosystems (New York. Print), ISSN 1432-9840, E-ISSN 1435-0629, Vol. 12, nr 4, s. 574-589Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Quantifying vegetation structure and function is critical for modeling ecological processes, and an emerging challenge is to apply models at multiple spatial scales. Land surface heterogeneity is commonly characterized using rectangular pixels, whose length scale reflects that of remote sensing measurements or ecological models rather than the spatial scales at which vegetation structure and function varies. We investigated the ‘optimum’ pixel size and shape for averaging leaf area index (LAI) measurements in relatively large (85 m2 estimates on a 600 × 600-m2 grid) and small (0.04 m2 measurements on a 40 × 40-m2 grid) patches of sub-Arctic tundra near Abisko, Sweden. We define the optimum spatial averaging operator as that which preserves the information content (IC) of measured LAI, as quantified by the normalized Shannon entropy (ES,n) and Kullback–Leibler divergence (DKL), with the minimum number of pixels. Based on our criterion, networks of Voronoi polygons created from triangulated irregular networks conditioned on hydrologic and topographic indices are often superior to rectangular shapes for averaging LAI at some, frequently larger, spatial scales. In order to demonstrate the importance of information preservation when upscaling, we apply a simple, validated ecosystem carbon flux model at the landscape level before and after spatial averaging of land surface characteristics. Aggregation errors are minimal due to the approximately linear relationship between flux and LAI, but large errors of approximately 45% accrue if the normalized difference vegetation index (NDVI) is averaged without preserving IC before conversion to LAI due to the nonlinear NDVI-LAI transfer function.

sted, utgiver, år, opplag, sider
2009. Vol. 12, nr 4, s. 574-589
HSV kategori
Identifikatorer
URN: urn:nbn:se:polar:diva-8107DOI: 10.1007/s10021-009-9243-7OAI: oai:DiVA.org:polar-8107DiVA, id: diva2:1288172
Tilgjengelig fra: 2019-02-12 Laget: 2019-02-12 Sist oppdatert: 2019-02-12

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttps://doi.org/10.1007/s10021-009-9243-7
I samme tidsskrift
Ecosystems (New York. Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 62 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf