Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modelling CH4 emissions from arctic wetlands: effects of hydrological parameterization
Vise andre og tillknytning
Ansvarlig organisasjon
2008 (engelsk)Inngår i: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 5, nr 1, s. 111-121Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This study compares the CH4 fluxes from two arctic wetland sites of different annual temperatures during 2004 to 2006. The PEATLAND-VU model was used to simulate the emissions. The CH4 module of PEATLAND-VU is based on the Walter-Heimann model. The first site is located in northeast Siberia, Indigirka lowlands, Kytalyk reserve (70 degrees N, 147 degrees E) in a continuous permafrost region with mean annual temperatures of -14.3 degrees C. The other site is Stordalen mire in the eastern part of Lake Tornetrask (68 degrees N, 19 degrees E) ten kilometres east of Abisko, northern Sweden. It is located in a discontinuous permafrost region. Stordalen has a sub arctic climate with a mean annual temperature of -0.7 degrees C. Model input consisted of observed temperature, precipitation and snow cover data. In all cases, modelled CH4 emissions show a direct correlation between variations in water table and soil temperature variations. The differences in CH4 emissions between the two sites are caused by different climate, hydrology, soil physical properties, vegetation type and NPP. For Kytalyk the simulated CH4 fluxes show similar trends during the growing season, having average values for 2004 to 2006 between 1.29-2.09 mg CH4 m(-2) hr(-1). At Stordalen the simulated fluxes show a slightly lower average value for the same years (3.52 mg CH4 m(-2) hr(-1)) than the observed 4.7 mg CH4 m(-2) hr(-1). The effect of the longer growing season at Stordalen is simulated correctly. Our study shows that modelling of arctic CH4 fluxes is improved by adding a relatively simple hydrological model that simulates the water table position from generic weather data. Our results support the generalization in literature that CH4 fluxes in northern wetland are regulated more tightly by water table than temperature. Furthermore, parameter uncertainty at site level in wetland CH4 process models is an important factor in large scale modelling of CH4 fluxes.

sted, utgiver, år, opplag, sider
2008. Vol. 5, nr 1, s. 111-121
Emneord [en]
methane emissions, primary productivity, global distribution, peat soils, peatlands, management, oxidation, regimes, fluxes, carbon, Earth and Related Environmental Sciences, Geovetenskap och miljövetenskap
HSV kategori
Identifikatorer
URN: urn:nbn:se:polar:diva-7954DOI: 10.5194/bg-5-111-2008OAI: oai:DiVA.org:polar-7954DiVA, id: diva2:1284315
Konferanse
2011-06-21T10:29:41.976+02:00
Merknad

article; authorCount :8; 2017-12-11T10:00:09.702+01:00

Tilgjengelig fra: 2019-01-31 Laget: 2019-01-31 Sist oppdatert: 2019-01-31

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttp://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-59162
I samme tidsskrift
Biogeosciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 49 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf