Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach
Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.ORCID-id: 0000-0002-3785-8305
Vise andre og tillknytning
Ansvarlig organisasjon
2018 (engelsk)Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 13, nr 7, artikkel-id e0199608Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Climate change projections show that temperature and precipitation increases can alter the exchange of greenhouse gases between the atmosphere and high latitude landscapes, including their freshwaters. Dissolved organic carbon (DOC) plays an important role in greenhouse gas emissions, but the impact of catchment productivity on DOC release to subarctic waters remains poorly known, especially at regional scales. We test the hypothesis that increased terrestrial productivity, as indicated by the normalized difference vegetation index (NDVI), generates higher stream DOC concentrations in the Stordalen catchment in subarctic Sweden. Furthermore, we aimed to determine the degree to which other generic catchment properties (elevation, slope) explain DOC concentration, and whether or not land cover variables representing the local vegetation type (e.g., mire, forest) need to be included to obtain adequate predictive models for DOC delivered into rivers. We show that the land cover type, especially the proportion of mire, played a dominant role in the catchment's release of DOC, while NDVI, slope, and elevation were supporting predictor variables. The NDVI as a single predictor showed weak and inconsistent relationships to DOC concentrations in recipient waters, yet NDVI was a significant positive regulator of DOC in multiple regression models that included land cover variables. Our study illustrates that vegetation type exerts primary control in DOC regulation in Stordalen, while productivity (NDVI) is of secondary importance. Thus, predictive multiple linear regression models for DOC can be utilized combining these different types of explanatory variables.

sted, utgiver, år, opplag, sider
Public Library of Science , 2018. Vol. 13, nr 7, artikkel-id e0199608
HSV kategori
Identifikatorer
URN: urn:nbn:se:polar:diva-7733DOI: 10.1371/journal.pone.0199608ISI: 000437809500022PubMedID: 29979688OAI: oai:DiVA.org:polar-7733DiVA, id: diva2:1264174
Tilgjengelig fra: 2018-11-19 Laget: 2018-11-19 Sist oppdatert: 2018-11-19

Open Access i DiVA

fulltekst(31472 kB)35 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 31472 kBChecksum SHA-512
08185d66e44c95a4cd47b401e7a7ec91c4870021fbdb98d78414c130a2e13d6d92f6ad0d38b434dc35151364aa075ef31faf02ad453cb73049f49a9b41912b9f
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedFulltext

Søk i DiVA

Av forfatter/redaktør
Lundin, Erik JRoulet, Nigel T.
I samme tidsskrift
PLoS ONE

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 35 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 46 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf