Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Coordinated responses of soil communities to elevation in three subarctic vegetation types
Vise andre og tillknytning
Ansvarlig organisasjon
2017 (engelsk)Inngår i: Oikos, ISSN 0030-1299, E-ISSN 1600-0706, Vol. 126, nr 11, s. 1586-1599Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Global warming has begun to have a major impact on the species composition and functioning of plant and soil communities. However, long-term community and ecosystem responses to increased temperature are still poorly understood. In this study, we used a well-established elevational gradient in northern Sweden to elucidate how plant, microbial and nematode communities shift with elevation and associated changes in temperature in three highly contrasting vegetation types (i.e. heath, meadow and Salix vegetation). We found that responses of both the abundance and composition of microbial and nematode communities to elevation differed greatly among the vegetation types. Within vegetation types, changes with elevation of plant, microbial and nematode communities were mostly linked at fine levels of taxonomic resolution, but this pattern disappeared when coarser functional group levels were considered. Further, nematode communities shifted towards more conservative nutrient cycling strategies with increasing elevation in heath and meadow vegetation. Conversely, in Salix vegetation microbial communities with conservative strategies were most pronounced at the mid-elevation. These results provide limited support for increasing conservative nutrient cycling strategies at higher elevation (i.e. with a harsher climate). Our findings indicate that climate-induced changes in plant community composition may greatly modify or counteract the impact of climate change on soil communities. Therefore, to better understand and predict ecosystem responses to climate change, it will be crucial to consider vegetation type and its specific interactions with soil communities.

sted, utgiver, år, opplag, sider
Blackwell Publishing Ltd , 2017. Vol. 126, nr 11, s. 1586-1599
HSV kategori
Identifikatorer
URN: urn:nbn:se:polar:diva-3899DOI: 10.1111/oik.04158OAI: oai:DiVA.org:polar-3899DiVA, id: diva2:1165116
Tilgjengelig fra: 2017-12-12 Laget: 2017-12-12 Sist oppdatert: 2017-12-12

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttp://dx.doi.org/10.1111/oik.04158
I samme tidsskrift
Oikos

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 18 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf