Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Testing reliability of short-term responses to predict longer-term responses of bryophytes and lichens to environmental change
Ansvarlig organisasjon
2015 (engelsk)Inngår i: Ecological Indicators, ISSN 1470-160X, E-ISSN 1872-7034, Vol. 58, nr Supplement C, s. 77-85Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Abstract Environmental changes are predicted to have severe and rapid impacts on polar and alpine regions. At high latitudes/altitudes, cryptogams such as bryophytes and lichens are of great importance in terms of biomass, carbon/nutrient cycling, cover and ecosystem functioning. This seven-year factorial experiment examined the effects of fertilizing and experimental warming on bryophyte and lichen abundance in an alpine meadow and a heath community in subarctic Sweden. The aim was to determine whether short-term responses (five years) are good predictors of longer-term responses (seven years). Fertilizing and warming had significant negative effects on total and relative abundance of bryophytes and lichens, with the largest and most rapid decline caused by fertilizing and combined fertilizing and warming. Bryophytes decreased most in the alpine meadow community, which was bryophyte-dominated, and lichens decreased most in the heath community, which was lichen-dominated. This was surprising, as the most diverse group in each community was expected to be most resistant to perturbation. Warming alone had a delayed negative impact. Of the 16 species included in statistical analyses, seven were significantly negatively affected. Overall, the impacts of simulated warming on bryophytes and lichens as a whole and on individual species differed in time and magnitude between treatments and plant communities (meadow and heath). This will likely cause changes in the dominance structures over time. These results underscore the importance of longer-term studies to improve the quality of data used in climate change models, as models based on short-term data are poor predictors of long-term responses of bryophytes and lichens.

sted, utgiver, år, opplag, sider
2015. Vol. 58, nr Supplement C, s. 77-85
Emneord [en]
Climate change, Cryptogams, Fertilizing, Mosses, Warming
HSV kategori
Identifikatorer
URN: urn:nbn:se:polar:diva-3837DOI: 10.1016/j.ecolind.2015.05.050OAI: oai:DiVA.org:polar-3837DiVA, id: diva2:1156247
Tilgjengelig fra: 2017-11-10 Laget: 2017-11-10 Sist oppdatert: 2017-11-10

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttp://www.sciencedirect.com/science/article/pii/S1470160X15003106
I samme tidsskrift
Ecological Indicators

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 200 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf