Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The role of soil organic matter quality and physical environment for nitrogen mineralization at the forest-tundra ecotone in Fennoscandia
Ansvarlig organisasjon
2005 (engelsk)Inngår i: Arctic, Antarctic and Alpine research, ISSN 1523-0430, E-ISSN 1938-4246, Vol. 37, nr 1, s. 118-126Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Nitrogen availability is considered limiting for plant growth at the forest-tundra ecotone, and it might modulate ecosystem response to climate warming. The aim of this research was to compare the impact of climate, vegetation cover, and soil organic matter (SOM) chemistry on N mineralization rates at the forest-tundra ecotone. We therefore estimated N mineralization in mountain birch (Betula pubescens Ehrh. ssp. czerepanovii) forest and tundra soil across a broad-scale latitudinal gradient in Fennoscandia, which incorporated 4 research sites (Dovrefjell, Vassijaure, Abisko, and Joatka). During the summer period, ammonium was the dominant form of mineralized nitrogen in forest soils, while nitrate mineralization rates were higher at tundra sites during the winter. A negative regression relationship between an index of climatic continentality and N mineralization was found. Further, summer NH4+ mineralization rates increased with total N content in soils, while NO3- mineralization seemed to be associated with C availability. Our study showed markedly contrasting inorganic N release in forest and tundra soil, and that, although mineralization rates differed between the summer and winter period, the winter activity was relatively high and should not be ignored. We conclude that a shift in the forest-tundra ecotone in response to climate wan-ning will have stronger effects on nitrogen availability at these sites than the direct effects of warming.

sted, utgiver, år, opplag, sider
INST ARCTIC ALPINE RES , 2005. Vol. 37, nr 1, s. 118-126
HSV kategori
Identifikatorer
URN: urn:nbn:se:polar:diva-3664DOI: 10.1657/1523-0430(2005)037[0118:TROSOM]2.0.CO;2OAI: oai:DiVA.org:polar-3664DiVA, id: diva2:1103598
Tilgjengelig fra: 2017-05-30 Laget: 2017-05-30 Sist oppdatert: 2017-05-30

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst
I samme tidsskrift
Arctic, Antarctic and Alpine research

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 82 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf