Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cadmium isotope fractionation in seawater - A signature of biological activity
Ansvarlig organisasjon
2007 (engelsk)Inngår i: Earth and Planetary Science Letters, ISSN 0012-821X, E-ISSN 1385-013X, Vol. 261, nr 3-4, s. 670-684Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Investigations of cadmium isotope variations in the oceans may provide new insights into the factors that control the marine distribution and cycling of this element. Here we present the results of Cd isotope and concentration analyses for 22 seawater samples from the Atlantic, Southern, Pacific, and Arctic Oceans. The results reveal, for the first time, large and well resolved Cd isotope fractionations in the marine environment. The majority of the seawater samples display an inverse relationship between dissolved Cd contents and isotope compositions, which range from epsilon(114/110)Cd approximate to +3 +/- 0.5 for Cd-rich waters (0.8-1.0 nmol/kg) to epsilon(114/110)Cd approximate to 38 +/- 6 for surface water with a Cd concentration of only 0.003 nmol/kg (all epsilon(114/110)Cd data are reported relative to the JMC Cd Munster standard). This suggests that the Cd isotope variations reflect kinetic isotope effects that are generated during closed system uptake of dissolved seawater Cd by phytoplankton. A few samples do not follow this trend, as they exhibit extremely low Cd contents (<0.008 nmol/kg) and nearly un-fractionated Cd isotope compositions. Such complexities, which are not revealed by concentration data alone, require that the Cd distribution at the respective sites was affected by additional processes, such as water mass mixing, atmospheric inputs of Cd and/or adsorption. Uniform isotope compositions of epsilon(114/110)Cd = + 3.3 +/- 0.5 (1 S.D.) were determined for seawater from >= 900 in depth, despite of Cd concentrations that display the expected increase along the global deep-water pathway from the Atlantic (similar to 0.3 nmol/kg) to the Pacific Ocean (similar to 0.9 nmol/kg). This indicates that the biomass, which is remineralized in the deeper ocean, is also characterized by a very constant Cd isotope composition. This observation is in accord with the interpretation that the Cd distribution in surface waters is primarily governed by Rayleigh fractionation during near-quantitative uptake of dissolved seawater Cd. (C) 2007 Elsevier B.V. All rights reserved.

sted, utgiver, år, opplag, sider
2007. Vol. 261, nr 3-4, s. 670-684
Emneord [en]
cadmium; stable isotopes; isotope fractionation; seawater; double spike; mass spectrometry
HSV kategori
Forskningsprogram
SWEDARCTIC 2001, Arctic Ocean 2001
Identifikatorer
URN: urn:nbn:se:polar:diva-3162DOI: 10.1016/j.epsl.2007.07.034OAI: oai:DiVA.org:polar-3162DiVA, id: diva2:1049799
Tilgjengelig fra: 2016-11-25 Laget: 2016-11-21 Sist oppdatert: 2017-11-29

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst
I samme tidsskrift
Earth and Planetary Science Letters

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 27 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf