Planned maintenance
A system upgrade is planned for 24/9-2024, at 12:00-14:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bryophyte species differ widely in their growth and N2-fixation responses to temperature
Responsible organisation
2022 (English)In: Arctic Science, Vol. 8, no 4, p. 1236-1251Article in journal (Refereed) Published
Abstract [en]

Bryophytes are abundant in tundra ecosystems, where they affect carbon and nitrogen cycling through primary production and associations with N2-fixing bacteria. Bryophyte responses to climate warming are inconclusive, likely because species-specific responses are poorly understood. Here we investigated how warming affects the growth and nitrogenase activity of 10 tundra bryophyte species in two tundra landscapes. Collected bryophyte samples were grown in temperature-controlled growth chambers for 12 weeks at five temperatures from 3 to 18 °C. We measured growth, N concentration, δ15N, and δ13C after 3 months and nitrogenase activity after 5 and 12 weeks. Bryophyte growth and associated nitrogenase activity generally increased with temperature, but species differed in their optima. Bryophyte N concentration and δ15N indicated that, for some species, increased N2-fixation could not compensate for growth-induced N limitation. High landscape coverage and large positive warming effects on feather mosses and Sphagnum species highlight their competitive advantages, confirm earlier field observations, and contribute to the mechanistic understanding of differential bryophyte growth in response to warming. We suggest that indirect effects of climate change, such as surface drying and shrub expansion, are likely main threats to slow-growing bryophytes across the Arctic, with consequences for biodiversity and C balance.

Place, publisher, year, edition, pages
NRC Research Press , 2022. Vol. 8, no 4, p. 1236-1251
National Category
Ecology Botany
Identifiers
URN: urn:nbn:se:polar:diva-8988DOI: 10.1139/as-2021-0053OAI: oai:DiVA.org:polar-8988DiVA, id: diva2:1727048
Available from: 2023-01-14 Created: 2023-01-14 Last updated: 2023-01-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1139/as-2021-0053
EcologyBotany

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 25 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf