Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Statistics on Omega Band Properties and Related Geomagnetic Variations
Show others and affiliations
Responsible organisation
2021 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 126, no 7Article in journal (Refereed) Published
Abstract [en]

Using the list of the omega structures based on the Magnetometers-Ionospheric Radars-All-sky Cameras Large Experiment network (Partamies et al., 2017, https://doi.org/10.5194/angeo-35-1069-2017), we obtained a number of important statistical characteristics describing the surface magnetic field. Based on 438 events, typical magnetic variations associated with the passage of the single omega were obtained. The typical variation, obtained using superposed epoch analysis, is associated with a local bending of the westward electrojet and statistically confirms the distribution of equivalent ionospheric currents obtained in earlier observations of single omegas. It was found that during low and moderate geomagnetic activity, the appearance of the omega structures in the dark morning magnetic local time (MLT) sector results in two times higher than average dB/dt on the ground surface. Also, the velocity, direction of movement, and area of omega structures were calculated. It is shown that faster and bigger omegas produce larger time derivatives of the ground magnetic field. Furthermore, we demonstrate that in the 03?08 MLT sector, superposed magnetic variations for the arbitrary events of very high time derivatives |dB/dt| > 10 nT/s, reveal magnetic signatures similar to omegas. Our findings, together with the results described by Apatenkov et al. (2020, https://doi.org/10.1029/2019gl086677), emphasize the important role of omega structures in the formation of large geomagnetically induced currents.

Place, publisher, year, edition, pages
John Wiley & Sons, Ltd , 2021. Vol. 126, no 7
Keywords [en]
auroral omega band, geomagnetic disturbances, ground magnetic variation, dB/dt, geomagnetically induced currents, GIC
National Category
Astronomy, Astrophysics and Cosmology Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:polar:diva-8809DOI: 10.1029/2021JA029468OAI: oai:DiVA.org:polar-8809DiVA, id: diva2:1625681
Available from: 2022-01-09 Created: 2022-01-09 Last updated: 2022-01-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1029/2021JA029468
In the same journal
Journal of Geophysical Research - Space Physics
Astronomy, Astrophysics and CosmologyFusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 125 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf