System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tidal Modulation of Buoyant Flow and Basal Melt Beneath Petermann Gletscher Ice Shelf, Greenland
Responsible organisation
2020 (English)In: Journal of Geophysical Research: Oceans, Vol. 125, no 10Article in journal (Refereed) Published
Abstract [en]

A set of collocated, in situ oceanographic and glaciological measurements from Petermann Gletscher Ice Shelf, Greenland, provides insights into the dynamics of under-ice flow driving basal melting. At a site 16 km seaward of the grounding line within a longitudinal basal channel, two conductivity-temperature (CT) sensors beneath the ice base and a phase-sensitive radar on the ice surface were used to monitor the coupled ice shelf-ocean system. A 6 month time series spanning 23 August 2015 to 12 February 2016 exhibited two distinct periods of ice-ocean interactions. Between August and December, radar-derived basal melt rates featured fortnightly peaks of ~15 m yr-1 which preceded the arrival of cold and fresh pulses in the ocean that had high concentrations of subglacial runoff and glacial meltwater. Estimated current speeds reached 0.20 - 0.40 m s-1 during these pulses, consistent with a strengthened meltwater plume from freshwater enrichment. Such signals did not occur between December and February, when ice-ocean interactions instead varied at principal diurnal and semidiurnal tidal frequencies, and lower melt rates and current speeds prevailed. A combination of estimated current speeds and meltwater concentrations from the two CT sensors yields estimates of subglacial runoff and glacial meltwater volume fluxes that vary between 10 and 80 m3 s-1 during the ocean pulses. Area-average upstream ice shelf melt rates from these fluxes are up to 170 m yr-1, revealing that these strengthened plumes had already driven their most intense melting before arriving at the study site.

Place, publisher, year, edition, pages
2020. Vol. 125, no 10
Keywords [en]
ice-ocean interactions, ice shelves, boundary layer, basal melt, Greenland, glacier
National Category
Earth and Related Environmental Sciences
Research subject
SWEDARCTIC 2015, Petermann 2015
Identifiers
URN: urn:nbn:se:polar:diva-8707DOI: 10.1029/2020JC016427OAI: oai:DiVA.org:polar-8707DiVA, id: diva2:1554203
Available from: 2021-05-12 Created: 2021-05-12 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JC016427
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf