Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The role of atmospheric circulation patterns in driving recent changes in indices of extreme seasonal precipitation across Arctic Fennoscandia
Show others and affiliations
Responsible organisation
2020 (English)In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480, Vol. 162, no 2, p. 741-759Article in journal (Refereed) Published
Abstract [en]

Extreme precipitation events (EPEs) have a major impact across Arctic Fennoscandia (AF). Here we examine the spatial variability of seasonal 50-year trends in three EPEs across AF for 1968–2017, using daily precipitation data from 46 meteorological stations, and analyse how these are related to contemporaneous changes in the principal atmospheric circulation patterns that impact AF climate. Positive trends in seasonal wet-day precipitation (PRCPTOT) are widespread across AF in all seasons except autumn. Spring (autumn) has the most widespread negative (positive) trends in consecutive dry days (CDD). There is less seasonal dependence for trends in consecutive wet days (CWDs), but the majority of the stations show an increase. Clear seasonal differences in the circulation pattern that exerted most influence on these AF EPE trends exist. In spring, PRCPTOT and CDD are most affected by the Scandinavian pattern at more than half the stations while it also has a marked influence on CWD. The East Atlantic/Western Russia pattern generally has the greatest influence on the most station EPE trends in summer and autumn, yet has no effect during either spring or winter. In winter, the dominant circulation pattern across AF varies more between the different EPEs, with the North Atlantic Oscillation, Polar/Eurasia and East Atlantic patterns all exerting a major influence. There are distinct geographical distributions to the dominant pattern affecting particular EPEs in some seasons, especially winter, while in others there is no discernible spatial relationship.

Place, publisher, year, edition, pages
2020. Vol. 162, no 2, p. 741-759
National Category
Meteorology and Atmospheric Sciences Climate Research
Identifiers
URN: urn:nbn:se:polar:diva-8537DOI: 10.1007/s10584-020-02747-wOAI: oai:DiVA.org:polar-8537DiVA, id: diva2:1517532
Available from: 2021-01-14 Created: 2021-01-14 Last updated: 2021-01-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1007/s10584-020-02747-w
In the same journal
Climatic Change
Meteorology and Atmospheric SciencesClimate Research

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 90 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf