Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Determining Subarctic Peatland Vegetation Using an Unmanned Aerial System (UAS)
Show others and affiliations
Responsible organisation
2018 (English)In: Remote Sensing, ISSN 2072-4292, E-ISSN 2072-4292, Vol. 10, no 9, p. 1-20, article id 1498Article in journal (Refereed) Published
Abstract [en]

Rising global temperatures tied to increases in greenhouse gas emissions are impacting high latitude regions, leading to changes in vegetation composition and feedbacks to climate through increased methane (CH4) emissions. In subarctic peatlands, permafrost collapse has led to shifts in vegetation species on landscape scales with high spatial heterogeneity. Our goal was to provide a baseline for vegetation distribution related to permafrost collapse and changes in biogeochemical processes. We collected unmanned aerial system (UAS) imagery at Stordalen Mire, Abisko, Sweden to classify vegetation cover types. A series of digital image processing routines were used to generate texture attributes within the image for the purpose of characterizing vegetative cover types. An artificial neural network (ANN) was developed to classify the image. The ANN used all texture variables and color bands (three spectral bands and six metrics) to generate a probability map for each of the eight cover classes. We used the highest probability for a class at each pixel to designate the cover type in the final map. Our overall misclassification rate was 32%, while omission and commission error by class ranged from 0% to 50%. We found that within our area of interest, cover classes most indicative of underlying permafrost (hummock and tall shrub) comprised 43.9% percent of the landscape. Our effort showed the capability of an ANN applied to UAS high-resolution imagery to develop a classification that focuses on vegetation types associated with permafrost status and therefore potentially changes in greenhouse gas exchange. We also used a method to examine the multiple probabilities representing cover class prediction at the pixel level to examine model confusion. UAS image collection can be inexpensive and a repeatable avenue to determine vegetation change at high latitudes, which can further be used to estimate and scale corresponding changes in CH4 emissions.

Place, publisher, year, edition, pages
2018. Vol. 10, no 9, p. 1-20, article id 1498
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-7943DOI: 10.3390/rs10091498OAI: oai:DiVA.org:polar-7943DiVA, id: diva2:1284301
Available from: 2019-01-31 Created: 2019-01-31 Last updated: 2019-01-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://www.mdpi.com/2072-4292/10/9/1498
In the same journal
Remote Sensing
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf