Planned maintenance
A system upgrade is planned for 24/9-2024, at 12:00-14:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
No effects of experimental warming but contrasting seasonal patterns for soil peptidase and glycosidase enzymes in a sub-arctic peat bog
Responsible organisation
2014 (English)In: Biogeochemistry, ISSN 0168-2563, E-ISSN 1573-515X, Vol. 117, no 1, p. 55-66Article in journal (Refereed) Published
Abstract [en]

The nature of linkages between soil C and N cycling is important in the context of terrestrial ecosystem responses to global environmental change. Extracellular enzymes produced by soil microorganisms drive organic matter decomposition, and are considered sensitive indicators of soil responses to environmental variation. We investigated the response of eight hydrolytic soil enzymes (four peptidases and four glycosidases) to experimental warming in a long-term climate manipulation experiment in a sub-arctic peat bog, to determine to what extent the response of these two functional groups are similar. We found no significant effect of experimental spring and summer warming and/or winter snow addition on either the potential activity or the temperature sensitivity (of Vmax) of any of the enzymes. However, strong and contrasting seasonal patterns in both variables were observed. All of the peptidases, as well as alpha-glucosidase, had lower potential activity at the end of summer (August) compared to the beginning (June). Conversely, beta-glucosidase had significantly higher potential activity in August. Peptidases had consistently higher temperature sensitivities in June compared to August, while all four glycosidases showed the opposite pattern. Our results suggest that warming effects on soil enzymes are small compared to seasonal differences, which are most likely mediated by the seasonality of substrate supply and microbial nutrient demand. Furthermore the contrasting seasonal patterns for glycosidases and peptidases suggest that enzyme-based models of soil processes need to allow for potential divergence between the production and activity of these two enzyme functional groups.

Place, publisher, year, edition, pages
2014. Vol. 117, no 1, p. 55-66
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-4126DOI: 10.1007/s10533-013-9870-0OAI: oai:DiVA.org:polar-4126DiVA, id: diva2:1170742
Available from: 2018-01-04 Created: 2018-01-04 Last updated: 2018-01-04

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1007/s10533-013-9870-0
In the same journal
Biogeochemistry
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf