Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparing and contrasting dispersionless injections at geosynchronous orbit during a substorm event
Show others and affiliations
Responsible organisation
2017 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402Article in journal (Refereed) Published
Abstract [en]

Particle injections in the magnetosphere transport electrons and ions from the magnetotail to the radiation belts. Here we consider generation mechanisms of “dispersionless” injections, namely, those with simultaneous increase of the particle flux over a wide energy range. In this study we take advantage of multisatellite observations which simultaneously monitor Earth’s magnetospheric dynamics from the tail toward the radiation belts during a substorm event. Dispersionless injections are associated with instabilities in the plasma sheet during the growth phase of the substorm, with a dipolarization front at the onset and with magnetic flux pileup during the expansion phase. They show different spatial spread and propagation characteristics. Injection associated with the dipolarization front is the most penetrating. At geosynchronous orbit (6.6 RE), the electron distributions do not have a classic power law fit but instead a bump on tail centered on ∼120 keV during dispersionless electron injections. However, electron distributions of injections associated with magnetic flux pileup in the magnetotail (13 RE) do not show such a signature. We surmise that an additional resonant acceleration occurs in between these locations. We relate the acceleration mechanism to the electron drift resonance with ultralow frequency waves localized in the inner magnetosphere.

Place, publisher, year, edition, pages
2017.
Keywords [en]
particle injections, substorm, acceleration, dipolarization, current wedge, ULF waves
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-3517DOI: 10.1002/2016JA023551OAI: oai:DiVA.org:polar-3517DiVA, id: diva2:1083606
Available from: 2017-03-21 Created: 2017-03-21 Last updated: 2017-11-29

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://dx.doi.org/10.1002/2016JA023551
In the same journal
Journal of Geophysical Research - Space Physics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 40 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf