Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Seafloor cratering and sediment remolding at sites of fluid escape
Show others and affiliations
Responsible organisation
2015 (English)In: Geology, ISSN 0091-7613, E-ISSN 1943-2682, Vol. 43, no 10, p. 895-898Article in journal (Refereed) Published
Abstract [en]

Episodic fluid escape from marine sediments results from overpressure development and pressure release, and can occur slowly through geologic time or catastrophically. Morphological features in regions of fluid seepage include doming, mud volcanism, cratering, and pockmark formation. Vertical sediment mobilization and surface erosion are considered the principal mechanisms for these topographic changes. However, the impact of mobilization on the geotechnical properties of sediments has not been explicitly considered. Here we develop a one-dimensional numerical subsidence model that incorporates the well-established behavior of remolded fine-grained cohesive sediments. We use this to show that if subsurface overpressure results in the mobilization of sediments, large settlements (20%-35% reduction in volume) can occur when overpressure dissipates. This presents a novel mechanism to explain changes in seafloor and subsurface topography in areas of fluid escape, while highlighting an important interplay between subsurface fluid flow and the geotechnical properties of fine-grained cohesive sediments.

Place, publisher, year, edition, pages
2015. Vol. 43, no 10, p. 895-898
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-2923DOI: 10.1130/G36945.1OAI: oai:DiVA.org:polar-2923DiVA, id: diva2:1046087
Available from: 2016-11-11 Created: 2016-10-27 Last updated: 2017-11-29

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
In the same journal
Geology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf